
R23 Course Code: 23CS0518

UNIT –I

INTRODUCTION TO AUTOMATA AND REGULAR EXPRESSIONS

1 a Define alphabet example. [L1][CO1] [2M]

 b State what is Languages? [L1][CO1] [2M]

 c Define Grammar. [L1][CO1] [2M]

d Define Finite Automata. [L1][CO1] [2M]

 e Describe Regular Expression with example. [L1][CO1] [2M]

2 Define String. Describe String acceptance and check whether the given

finite automata accept the given strings or not.

(i) 0001 (ii) 1010

[L2][CO1]

[5M]

 b Analyze and explain with example Chomsky Hierarchy of Languages [L4][CO1] [5M]

3 a Compare DFA and NFA [L4][CO1] [5M]

b Design DFA which accepts even number of 0’s and odd number of

0’sover {0, 1}.

[L6][CO1] [5M]

4 Describe the procedure of conversion of NFA to DFA. Convert the

given NFA to DFA.

[L6][CO1] [10M]

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:PUTTUR
(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Automata Theory and Compiler Design (23CS0518)

Course & Branch: III B.Tech – CSE Year & Sem: III &I Regulations: R23

Year &Sem: III-B.Tech & I-Sem Regulation: R23

R23 Course Code: 23CS0518

5 Explain the procedure adapted for minimization of finite automata.

Minimize the following automata

[L3][CO1] [10M]

6 a List out the identities of Regular expression. [L1][CO1] [5M]

 b From the identities of RE, prove that

i) 10+(1010)*[^+(1010)*]=10+(1010)*

ii) (1+100*)+(1+100*)(0+10*)(0+10*)*=10*(0+10*)*

[L3][CO1] [5M]

7 Explain the procedure adapted to convert Regular Grammar to Finite

Automata and Convert the given Regular Grammar to Finite Automata

S  aA/bB/a/b

A aS/bB/b

BaA/bS

[L3][CO1] [10M]

8 a Construct an equivalent FA for the given regular expression using

Top Down approach

10 + (0 + 11)0* 1

[L6][CO1] [5M]

 b Construct an equivalent FA for the given regular expression using

Bottom up approach (0+1)*(00+11)(0+1)*

[L6][CO1] [5M]

9 a State Pumping lemma for regular sets. [L1][CO1] [4M]

 b Prove that L = {a
i
b

i
 | i ≥ 0} is not regular [L3][CO1] [6M]

10 a Discuss about the Closure properties of Regular Sets [L2][CO1] [5M]

 b What are the applications of Pumping Lemma? [L1][CO1] [5M]

R23 Course Code: 23CS0903

UNIT –II

CONTEXT FREE GRAMMARS AND PUSHDOWN AUTOMATA

1 a What is Context Free Language and Context Free Grammar? [L1][CO2] [2M]

 b State what is derivation with example. [L1][CO2] [2M]

 c Define Ambiguous grammar with examples. [L1][CO2] [2M]

 d Describe Simplifying the Grammar. [L2][CO2] [2M]

 e State the formal definition of Push Down Automata [L2][CO2] [2M]

2 Describe and Construct Leftmost derivation, Rightmost derivation and

derivation tree for the string 0100110 using the given grammar

S0S/1AA

A0/1A/0B

B1/0BB

[L6][CO2] [10M]

3 a What is left recursion? Eliminate left recursion for the following

grammar

EE+T/T TT*F/F F(E)/id

[L3][CO2] [5M]

 b Show what you understand by Left factoring. Perform left factor for the

grammar

 AabB/aB/cdg/cdeB/cdfB

[L3][CO2] [5M]

4 Evaluate simplification of the following context free grammar.

S Aa /B B a/bC Ca / ϵ

[L5][CO2] [10M]

5 a Remove the unit production from the grammar

SAB AE BC CD Db Ea

[L3][CO2] [5M]

b Remove ϵ productons from the grammar

SABaC ABC Bb/ ϵ CD/ϵ Dd

[L3][CO2] [5M]

6 a Write the process adapted to convert the grammar into CNF? [L2][CO2] [4M]

b Convert the following grammar into CNF.

S bA/aB AbAA/aS/a BaBB/bS/a

[L3][CO2] [6M]

7 Define Greibach Normal Form. Convert the following grammar into

Greibach Normal Form.

SAA/a ASS/b

[L3][CO2] [10M]

a Describe about acceptance of PDA. [L2][CO2] [4M]

8 b Construct a PDA which recognizes all strings that contain equal number

of 0’s and 1’s.

[L6][CO2] [6M]

9 Construct a DPDA to accept the language L={WCWR / W ∈ (a,b)+ }by

empty stack and final state.

[L6][CO2] [10M]

10 Explain the procedure to Construct an equivalent PDA from a CFG and

adapt the same for the given grammar.

SaAB | bBA AbS | a BaS | b.

[L6][CO2] [10M]

11 Evaluate the process adapted and convert the given PDA into an

equivalent CFG.

δ (q0,a0,z0)(q1,z1z0)

δ(q0,b,z0)(q1,z2z0)

δ(q1,a,z1)(q1, z1z1)

δ(q1,b,z1)(q1, λ)

δ(q1,b,z2)(q1,z2z2)

δ(q1,a,z2)(q1, λ)

δ(q1, λ,z2)(q1, λ) // accepted by the empty stack.

[L5][CO2] [10M]

R23 Course Code: 23CS0903

UNIT –III

TURING MACHINES AND INTRODUCTION TO COMPILERS

1 a State Turing machine. [L1][CO2] [2M]

 b Define Compiler [L1][CO3] [2M]

 c List all the phases of compiler [L1][CO2] [2M]

 d Give the differences between compiler and interpreter. [L1][CO2] [2M]

 e List the different types of Turing Machine. [L1][CO2] [2M]

2 Explain the various types of Turing machine. [L2][CO2] [10M]

3 a Describe Instantaneous Description of Turing Machine. [L2][CO2] [5M]

 b Explain about the graphical notation of TM. [L2][CO2] [5M]

4 a Illustrate the procedure adapted to convert RE to TM. [L3][CO2] [5M]

 b Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM [L3][CO2] [5M]

5 Construct a Turing machine that recognizes the language L={a
n
 b

n
,

n>1}. Show an ID for the string ‘aabb’ with tape symbols.

[L6][CO2] [10M]

6 Describe in detail the phases of a compiler with neat diagram. [L2][CO3] [10M]

7 Design the compiler by using the source program

position = intial + rate * 60.

[L6][CO3] [10M]

8 Explain in detail about the role of lexical analyzer in Compiler Design. [L2][CO4] [10M]

9 What is input buffering? Explain its purpose and how it works [L2][CO4] [10M]

R23 Course Code: 23CS0903

UNIT –IV

PARSERS AND INTERMEDIATE CODE GENERATION

1 a What is meant by Non-recursive predictive parsing? [L2][CO5] [2M]

 b Analyze the difference between Top-Down and Bottom -Up parser [L1][CO5] [2M]

 c List the types of parsers available in compilers [L1][CO5] [2M]

 d Define augmented grammar. [L1][CO5] [2M]

 e Describe FIRST and FOLLOW with example [L1][CO5] [2M]

2 a Illustrate the rules to be followed in finding the FIRST and FOLLOW. [L3][CO5] [6M]

 b Find FIRST and FOLLOW for the following grammar?

E E+T/T TT*F/F F(E)/id

[L3][CO5] [4M]

3 Consider the grammar

 SAB | ABad

 Ad

 E b

 Db | ε

 Bc

Construct the predictive parse table and check whether the given grammar

is LL(1) or not.

[L6][CO5] [10M]

4 Consider the grammar

 EE+T/T, TT*F/F, F(E)|id

Design predictive parsing table and check the given grammar is LL(1) or

not?

[L6][CO5] [10M]

5 Prepare Shift Reduce Parsing for the input string using the grammar

S(L)|a

LL,S|S

a)(a,(a,a))

b)(a,a)

[L6][CO5] [10M]

6 Construct the LR(0) items for the following Grammar

SL=R

SR

L*R

Lid

RL

[L6][CO5] [10M]

7 Construct CLR Parsing table for the given

grammar

SCC CaC/d

[L6][CO5] [10M]

8 Design the LALR parser for the following Grammar

S  AA A  aA A b

[L6][CO5] [10M]

9 Analyse different types of Intermediate Code with an example. [L4][CO5] [10M]

10 Explain Representation of Three Address Codes and perform the same

for the given expression:

(x + y) * (y + z) + (x + y + z)

[L6][CO5] [10M]

R23 Course Code: 23CS0903

UNIT –V

CODE OPTIMIZATION AND CODE GENERATION

1 a List the optimization techniques of basic blocks [L1][CO6] [2M]

 b Define DAG with example [L1][CO6] [2M]

 c Create the DAG for following statement. a+b*c+d+b*c [L6][CO6] [2M]

 d Discuss about machine dependent optimization [L1][CO6] [2M]

 e List all the issues in the design of a code generator [L1][CO6] [2M]

2 Explain the peephole optimization Technique with examples. [L2][CO6] [10M]

3 Explain the following

i) Basic blocks ii) Flow Graphs

[L3][CO6] [10M]

4 Analyse different types of optimization techniques of basic blocks [L4][CO6] [10M]

5 List out the properties of global data flow analysis and explain it. [L2][CO6] [5M]

6 Construct the DAG for the following basic blocks

1. t1:=4*i

2. t2:=a[t1]

3. t3:=4*i

4. t4:=b[t3]

5. t5:=t2*t4

6. t6:=prod+t5

7. prod:=t6

8. t7:=i+1

9. i:=t7

if i<=20 goto 1

[L6][CO6] [10M]

7 Interpret the principles of source code optimization techniques to be

considered during code generation.

[L3][CO6] [10M]

8 a Discuss about function preserving transformations. [L2][CO6] [5M]

b Describe about loop optimization technique. [L2][CO6] [5M]

9 Explain the issues to be handled when code generator is designed. [L2][CO6] [5M]

10 a Analyse the different forms in target program. [L4][CO6] [5M]

 b Analyze Simple code generator [L4][CO6] [5M]

Prepared by

 Dr.R.M.Mallika, Dr.K.Hemabala, K.Hema

