SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Automata Theory and Compiler Design (23CS0518)

Course & Branch: III B.Tech – CSE Year & Sem: III &I Regulations: R23

<u>UNIT –I</u> <u>INTRODUCTION TO AUTOMATA AND REGULAR EXPRESSIONS</u>

1	a	Define alphabet ex	ample.				[L1][CO1]	[2M]
	b	State what is Languages?			[L1][CO1]	[2M]		
	c	Define Grammar.			[L1][CO1]	[2M]		
	d	Define Finite Automata.			[L1][CO1]	[2M]		
	e	Describe Regular E	Expression w	ith example			[L1][CO1]	[2M]
2		Define String. Desc	_	-		hether the given	[L2][CO1]	[5M]
		finite automata acc	ept the giver	n strings or n	ot.	_		
			States	Input Al	phabtes			
			(Q)	0	1			
			-> q0	q1	q3			
			q1	q0	q2			
			(q2)	q3	q1			
			q3	q2	q0			
		(i) 0001 (i	i) 1010					
	b	Analyze and explain	n with exam	ple Chomsk	y Hierarchy	of Languages	[L4][CO1]	[5M]
3	a	r					[L4][CO1]	[5M]
	b		accepts eve	n number of	f 0's and odd	d number of	[L6][CO1]	[5M]
		0'sover {0, 1}.						
4		Describe the procedure of conversion of NFA to DFA. Convert the				Convert the	[L6][CO1]	[10M]
		given NFA to DFA.						
			-		xt state 1			
		\rightarrow	· q0	q0,q1	q0			
			q1	q2	q1			
			q2	q 3	q 3			
			(q3)	-	q2			

Jour	se C	3CS0318		
5		Explain the procedure adapted for minimization of finite automata. Minimize the following automata B C Explain the procedure adapted for minimization of finite automata. Minimize the following automata	[L3][CO1]	[10M]
6	a	List out the identities of Regular expression.	[L1][CO1]	[5M]
	b	From the identities of RE, prove that i) 10+(1010)*[^+(1010)*]=10+(1010)* ii) (1+100*)+(1+100*)(0+10*)(0+10*)*=10*(0+10*)*	[L3][CO1]	[5M]
7		Explain the procedure adapted to convert Regular Grammar to Finite Automata and Convert the given Regular Grammar to Finite Automata S → aA/bB/a/b A→ aS/bB/b B→aA/bS	[L3][CO1]	[10M]
8	a	Construct an equivalent FA for the given regular expression using Top Down approach $10 + (0 + 11)0*$ 1	[L6][CO1]	[5M]
	b	Construct an equivalent FA for the given regular expression using Bottom up approach (0+1)*(00+11)(0+1)*	[L6][CO1]	[5M]
9	a	State Pumping lemma for regular sets.	[L1][CO1]	[4M]
	b	Prove that $L = \{a^ib^i \mid i \ge 0\}$ is not regular	[L3][CO1]	[6M]
10	a	Discuss about the Closure properties of Regular Sets	[L2][CO1]	[5M]
	b	What are the applications of Pumping Lemma?	[L1][CO1]	[5M]
	1		l .	<u> </u>

<u>UNIT –II</u> <u>CONTEXT FREE GRAMMARS AND PUSHDOWN AUTOMATA</u>

1	a	What is Context Free Language and Context Free Grammar?	[L1][CO2]	[2M]
	b	State what is derivation with example.	[L1][CO2]	[2M]
	c	Define Ambiguous grammar with examples.	[L1][CO2]	[2M]
	d	Describe Simplifying the Grammar.	[L2][CO2]	[2M]
	e	State the formal definition of Push Down Automata	[L2][CO2]	[2M]
2		Describe and Construct Leftmost derivation, Rightmost derivation and	[L6][CO2]	[10M]
		derivation tree for the string 0100110 using the given grammar		
		$S \rightarrow 0S/1AA$		
		$A \rightarrow 0/1A/0B$		
		B→1/0BB		
3	a	What is left recursion? Eliminate left recursion for the following	[L3][CO2]	[5M]
		grammar		
		$E \rightarrow E + T/T$ $T \rightarrow T*F/F$ $F \rightarrow (E)/id$		
	b	Show what you understand by Left factoring. Perform left factor for the	[L3][CO2]	[5M]
		grammar		
4		A→abB/aB/cdg/cdeB/cdfB	[I 5][CO2]	[10] /[]
4		Evaluate simplification of the following context free grammar. $S \rightarrow Aa/B B \rightarrow a/bC C \rightarrow a/\epsilon$	[L5][CO2]	[10M]
			TT 211 (CO21	[
5	a	Remove the unit production from the grammar $S \rightarrow AB$ $A \rightarrow E$ $B \rightarrow C$ $C \rightarrow D$ $D \rightarrow b$ $E \rightarrow a$	[L3][CO2]	[5M]
	1-		[I 2][CO2]	[5 N /[]
	b	Remove ϵ productons from the grammar S \rightarrow ABaC A \rightarrow BC B \rightarrow b/ ϵ C \rightarrow D/ ϵ D \rightarrow d	[L3][CO2]	[5M]
6	_		[I 2][CO2]	[4M]
U	a b	Write the process adapted to convert the grammar into CNF? Convert the following grammar into CNF.	[L2][CO2] [L3][CO2]	[6M]
	D	S \rightarrow bA/aB A \rightarrow bAA/aS/a B \rightarrow aBB/bS/a		[OIVI]
7		Define Greibach Normal Form. Convert the following grammar into	[L3][CO2]	[10M]
,		Greibach Normal Form.		
		$S \rightarrow AA/a A \rightarrow SS/b$		
	a	Describe about acceptance of PDA.	[L2][CO2]	[4M]
8	b	Construct a PDA which recognizes all strings that contain equal number		[6M]
		of 0's and 1's.		-
9		Construct a DPDA to accept the language $L=\{WCWR / W \in (a,b)+\}$ by	[L6][CO2]	[10M]
		empty stack and final state.		
10		Explain the procedure to Construct an equivalent PDA from a CFG and	[L6][CO2]	[10M]
		adapt the same for the given grammar.		
		$S \rightarrow aAB \mid bBA \qquad A \rightarrow bS \mid a \qquad B \rightarrow aS \mid b.$		
11		Evaluate the process adapted and convert the given PDA into an	[L5][CO2]	[10M]
		equivalent CFG.		
		$\delta (q0,a0,z0) \rightarrow (q1,z1z0)$		
		$\delta(q0,b,z0) \rightarrow (q1,z2z0)$		
		$\delta(q1,a,z1) \rightarrow (q1,z1z1)$		
		$\delta(q1,b,z1) \rightarrow (q1,\lambda)$		
		$\delta(q1,b,z2) \rightarrow (q1,z2z2)$		
		$\delta(q1,a,z2) \rightarrow (q1,\lambda)$		
		$\delta(q1, \lambda, z2) \rightarrow (q1, \lambda) // \text{ accepted by the empty stack.}$		

<u>UNIT -III</u> <u>TURING MACHINES AND INTRODUCTION TO COMPILERS</u>

1	a	State Turing machine.	[L1][CO2]	[2M]
	b	Define Compiler		[2M]
	С	List all the phases of compiler		[2M]
	d	Give the differences between compiler and interpreter.		[2M]
	е	List the different types of Turing Machine.	[L1][CO2]	[2M]
2		Explain the various types of Turing machine.	[L2][CO2]	[10M]
3	a	Describe Instantaneous Description of Turing Machine.	[L2][CO2]	[5M]
	b	Explain about the graphical notation of TM.	[L2][CO2]	[5M]
4	a	Illustrate the procedure adapted to convert RE to TM.	[L3][CO2]	[5M]
	b	Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM	[L3][CO2]	[5M]
5		Construct a Turing machine that recognizes the language L={a ⁿ b ⁿ , n>1}. Show an ID for the string 'aabb' with tape symbols.	[L6][CO2]	[10M]
6		Describe in detail the phases of a compiler with neat diagram.	[L2][CO3]	[10M]
7		Design the compiler by using the source program position = intial + rate * 60.	[L6][CO3]	[10M]
8		Explain in detail about the role of lexical analyzer in Compiler Design.	[L2][CO4]	[10M]
9		What is input buffering? Explain its purpose and how it works	[L2][CO4]	[10M]

<u>UNIT –IV</u> PARSERS AND INTERMEDIATE CODE GENERATION

1	a	What is meant by Non-recursive predictive parsing?	[L2][CO5]	[2M]
	b	Analyze the difference between Top-Down and Bottom -Up parser	[L1][CO5]	[2M]
	С	List the types of parsers available in compilers	[L1][CO5]	[2M]
	d	Define augmented grammar.	[L1][CO5]	[2M]
	e	Describe FIRST and FOLLOW with example	[L1][CO5]	[2M]
2	a	Illustrate the rules to be followed in finding the FIRST and FOLLOW.	[L3][CO5]	[6M]
	b	Find FIRST and FOLLOW for the following grammar?	[L3][CO5]	[4M]
		$E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/id$		
3		Consider the grammar	[L6][CO5]	[10M]
		S→AB ABad		
		A→d		
		E →b		
		D → b ε		
		В→с		
		Construct the predictive parse table and check whether the given grammar		
		is LL(1) or not.		
4		Consider the grammar	[L6][CO5]	[10M]
		$E \rightarrow E + T/T$, $T \rightarrow T*F/F$, $F \rightarrow (E) id$		
		Design predictive parsing table and check the given grammar is LL(1) or		
		not?		
5		Prepare Shift Reduce Parsing for the input string using the grammar	[L6][CO5]	[10M]
		$S \rightarrow (L) a$		
		L→L,S S		
		a)(a,(a,a))		
		b)(a,a)		
6		Construct the LR(0) items for the following Grammar	[L6][CO5]	[10M]
		S→L=R		
		S→R		
		L→*R		
		L→id		
7		R → L		[1 (N /[]
7		Construct CLR Parsing table for the given	[L6][CO5]	[10M]
		grammar S→CC C→aC/d		
8				[10 N /[]
0		Design the LALR parser for the following Grammar $S \rightarrow AA \qquad A \rightarrow aA \qquad A \rightarrow b$	[L6][CO5]	[10M]
0				[10] [1
9		Analyse different types of Intermediate Code with an example.	[L4][CO5]	[10M]
10		Explain Representation of Three Address Codes and perform the same	[L6][CO5]	[10M]
		for the given expression:		
		(x + y) * (y + z) + (x + y + z)		
	<u> </u>			

<u>UNIT -V</u> <u>CODE OPTIMIZATION AND CODE GENERATION</u>

1	a	List the optimization techniques of basic blocks	[L1][CO6]	[2M]
	b	Define DAG with example	[L1][CO6]	[2M]
	c	Create the DAG for following statement. a+b*c+d+b*c	[L6][CO6]	[2M]
	d	Discuss about machine dependent optimization	[L1][CO6]	[2M]
	e	List all the issues in the design of a code generator	[L1][CO6]	[2M]
2		Explain the peephole optimization Technique with examples.	[L2][CO6]	[10M]
3		Explain the following	[L3][CO6]	[10M]
		i) Basic blocks ii) Flow Graphs		
4		Analyse different types of optimization techniques of basic blocks	[L4][CO6]	[10M]
5		List out the properties of global data flow analysis and explain it.	[L2][CO6]	[5M]
6		Construct the DAG for the following basic blocks	[L6][CO6]	[10M]
		1. t1:=4*i		
		2. $t2:=a[t1]$		
		3. t3:=4*i		
		4. $t4:=b[t3]$		
		5. t5:=t2*t4		
		6. t6:=prod+t5		
		7. prod:=t6		
		8. t7:=i+1		
		9. i:=t7		
		if i<=20 goto 1		
7		Interpret the principles of source code optimization techniques to be	[L3][CO6]	[10M]
		considered during code generation.		
8	a	Discuss about function preserving transformations.	[L2][CO6]	[5M]
	b	Describe about loop optimization technique.	[L2][CO6]	[5M]
9		Explain the issues to be handled when code generator is designed. [L2]		[5M]
10	a	Analyse the different forms in target program.	[L4][CO6]	[5M]
	b	Analyze Simple code generator	[L4][CO6]	[5M]

Prepared by Dr.R.M.Mallika, Dr.K.Hemabala, K.Hema